enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...

  6. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    A function is (totally) differentiable if its total derivative exists at every point in its domain. Conceptually, the definition of the total derivative expresses the idea that d f a {\displaystyle df_{a}} is the best linear approximation to f {\displaystyle f} at the point a {\displaystyle a} .

  7. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

  8. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Like some other fractals, the function exhibits self-similarity: every zoom (red circle) is similar to the global plot. In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere.

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    It states that every function that results from the differentiation of another function has the intermediate value property: the image of an interval is also an interval. When ƒ is continuously differentiable ( ƒ in C 1 ([ a , b ])), this is a consequence of the intermediate value theorem .