Search results
Results from the WOW.Com Content Network
The hydrates dissolve in water to give mildly acidic solutions with a pH of around 4. These solutions consist of the metal aquo complex [Mn(H 2 O) 6 ] 2+ . It is a weak Lewis acid , reacting with chloride ions to produce a series of salts containing the following ions [MnCl 3 ] − , [MnCl 4 ] 2− , and [MnCl 6 ] 4− .
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek . Freezing point depression is a colligative property , so Δ T depends only on the number of solute particles dissolved, not the nature of those particles.
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...
In this section our central macroscopic variables and parameters and their units are temperature [K], pressure [bar], molar mass [g/mol], low density (low pressure or dilute) gas viscosity [μP]. It is, however, common in the industry to use another unit for liquid and high density gas viscosity η {\displaystyle \eta } [cP].
Molar mass: 173.027 g/mol (anhydrous) 245.087 g/mol (tetrahydrate) ... soluble in water (about 700g/L at 20°C for tetrahydrate), methanol, acetic acid (anhydrous)