enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  4. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted ⁠ 0 {\displaystyle 0} ⁠ , and the inverse of ...

  5. Galois representation - Wikipedia

    en.wikipedia.org/wiki/Galois_representation

    For example, if L is a Galois extension of a number field K, the ring of integers O L of L is a Galois module over O K for the Galois group of L/K (see Hilbert–Speiser theorem). If K is a local field, the multiplicative group of its separable closure is a module for the absolute Galois group of K and its study leads to local class field theory.

  6. Character (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Character_(mathematics)

    A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.

  7. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    If K is a field, a valuation v is a group homomorphism from the multiplicative group K ∗ to a totally ordered abelian group G such that, for any f, g in K with f + g nonzero, v(f + g) ≥ min{v(f), v(g)}. The valuation ring of v is the subring of K consisting of zero and all nonzero f such that v(f) ≥ 0. Examples:

  8. Algebraic group - Wikipedia

    en.wikipedia.org/wiki/Algebraic_group

    The algebraic group is called multiplicative group, because its -points are isomorphic to the multiplicative group of the field (an isomorphism is given by (,) ; note that the subset of invertible elements does not define an algebraic subvariety in ).

  9. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.