Search results
Results from the WOW.Com Content Network
the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
The multiplicative group of integers modulo n, which is the group of units in this ring, ... By the fundamental theorem of finite abelian groups, the group ...
In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1) th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α i for some natural number i.
The multiplicative inverse for an element a of a finite field can be calculated a number of different ways: By multiplying a by every number in the field until the product is one. This is a brute-force search. Since the nonzero elements of GF(p n) form a finite group with respect to multiplication, a p n −1 = 1 (for a ≠ 0), thus the inverse ...
The group of units, R ×, can be decomposed as a direct product G 1 ×G 2, as follows. The subgroup G 1 is the group of (p r – 1)-th roots of unity. It is a cyclic group of order p r – 1. The subgroup G 2 is 1+pR, consisting of all elements congruent to 1 modulo p. It is a group of order p r(n−1), with the following structure:
Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.
The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...