Search results
Results from the WOW.Com Content Network
A random password generator is a software program or hardware device that takes input from a random or pseudo-random number generator and automatically generates a password. Random passwords can be generated manually, using simple sources of randomness such as dice or coins , or they can be generated using a computer.
Cryptographically Secure Random number on Windows without using CryptoAPI; Conjectured Security of the ANSI-NIST Elliptic Curve RNG, Daniel R. L. Brown, IACR ePrint 2006/117. A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator, Daniel R. L. Brown and Kristian Gjosteen, IACR ePrint 2007/048. To appear in CRYPTO 2007.
If a full derandomization is desired, a completely deterministic simulation proceeds by replacing the random input to the randomized algorithm with the pseudorandom string produced by the pseudorandom generator. The simulation does this for all possible seeds and averages the output of the various runs of the randomized algorithm in a suitable way.
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
Thus, for variant 1 (that is, most UUIDs) a random version 4 UUID will have 6 predetermined variant and version bits, leaving 122 bits for the randomly generated part, for a total of 2 122, or 5.3 × 10 36 (5.3 undecillion) possible version-4 variant-1 UUIDs. There are half as many possible version 4, variant 2 UUIDs (legacy GUIDs) because ...
In Unix-like operating systems, /dev/random and /dev/urandom are special files that serve as cryptographically secure pseudorandom number generators (CSPRNGs).
Mask generation functions are deterministic; the octet string output is completely determined by the input octet string. The output of a mask generation function should be pseudorandom, that is, if the seed to the function is unknown, it should be infeasible to distinguish the output from a truly random string. [1]
The Python hash is still a valid hash function when used within a single run, but if the values are persisted (for example, written to disk), they can no longer be treated as valid hash values, since in the next run the random value might differ.