Search results
Results from the WOW.Com Content Network
A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation xRy defined by x > 2 is neither symmetric (e.g. 5 R 1 , but not 1 R 5 ) nor ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14] The relation defined by xRy if x is even and y is odd is both transitive and antitransitive. [15] The relation defined by xRy if x is the successor number of y is both intransitive [16] and antitransitive. [17]
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
The set of all homogeneous relations () over a set X is the set 2 X×X, which is a Boolean algebra augmented with the involution of mapping of a relation to its converse relation. Considering composition of relations as a binary operation on B ( X ) {\displaystyle {\mathcal {B}}(X)} , it forms a monoid with involution where the identity element ...
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.