Search results
Results from the WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time
A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]
The software implements the multifrontal method, which is a version of Gaussian elimination for large sparse systems of equations, especially those arising from the finite element method. It is written in Fortran 90 with parallelism by MPI and it uses BLAS and ScaLAPACK kernels for dense matrix computations.
Comments: The LUP and LU decompositions are useful in solving an n-by-n system of linear equations =. These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination.
The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.
Preconditioned iterative solvers typically outperform direct solvers, e.g., Gaussian elimination, for large, especially for sparse, matrices. Iterative solvers can be used as matrix-free methods , i.e. become the only choice if the coefficient matrix A {\displaystyle A} is not stored explicitly, but is accessed by evaluating matrix-vector products.