enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following MATLAB code will plot the root locus of the closed-loop transfer function as varies using the described manual method as well as the rlocus built-in function: % Manual method K_array = ( 0 : 0.1 : 220 ). ' ; % .' is a transpose.

  4. Hopsan - Wikipedia

    en.wikipedia.org/wiki/HOPSAN

    It is also possible to perform Monte Carlo sensitivity analysis. The plotting tool is capable of generating frequency spectrums and performing frequency analysis to generate Bode diagrams and Nyquist plots. Hopsan models can be exported to Simulink. Plot data can be exported to XML, CSV, gnuplot and Matlab.

  5. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...

  6. Campbell diagram - Wikipedia

    en.wikipedia.org/wiki/Campbell_diagram

    A Campbell diagram plot represents a system's response spectrum as a function of its oscillation regime. It is named for Wilfred Campbell, who introduced the concept. [1] [2] It is also called an interference diagram. [3]

  7. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function .

  8. Differentiator - Wikipedia

    en.wikipedia.org/wiki/Differentiator

    A straight-line approximation of its Bode plot when normalized with = and =-is: For the above plot: Below ω 1 {\displaystyle \omega _{1}} , the circuit attenuates, and well below ω 1 {\displaystyle \omega _{1}} acts like a differentiator.

  9. Pole–zero plot - Wikipedia

    en.wikipedia.org/wiki/Pole–zero_plot

    A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.