Search results
Results from the WOW.Com Content Network
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder. [2]
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while 20 − 3 − 3 − 3 − 3 − 3 − 3 − 3 < 0. In this sense, a quotient is the integer part of the ratio of two numbers. [9]
Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [ 1 ] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0 ...
A division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow ...
The theorem which underlies the definition of the Euclidean division ensures that such a quotient and remainder always exist and are unique. [20] In Euclid's original version of the algorithm, the quotient and remainder are found by repeated subtraction; that is, r k−1 is subtracted from r k−2 repeatedly until the remainder r k is smaller ...
When the quotient is not an integer and the division process is extended beyond the decimal point, one of two things can happen: The process can terminate, which means that a remainder of 0 is reached; or; A remainder could be reached that is identical to a previous remainder that occurred after the decimal points were written.