Search results
Results from the WOW.Com Content Network
Rijndael MixColumns. The MixColumns operation performed by the Rijndael cipher or Advanced Encryption Standard is, along with the ShiftRows step, its primary source of diffusion. Each column of bytes is treated as a four-term polynomial , each byte representing an element in the Galois field . The coefficients are elements within the prime sub ...
Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...
Dyadic transformation. xy plot where x = x0 ∈ [0, 1] is rational and y = xn for all n. The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map[1][2]) is the mapping (i.e., recurrence relation) (where is the set of sequences from ) produced by the rule. [3]
Laguerre polynomials. Complex color plot of the Laguerre polynomial L n (x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i. In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: which is a second-order linear differential ...
First, the input is mapped to its multiplicative inverse in GF(2 8) = GF(2) [x]/(x 8 + x 4 + x 3 + x + 1), Rijndael's finite field. Zero, as the identity, is mapped to itself. This transformation is known as the Nyberg S-box after its inventor Kaisa Nyberg. [2] The multiplicative inverse is then transformed using the following affine ...
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
The linear congruence 4x ≡ 5 (mod 10) has no solutions since the integers that are congruent to 5 (i.e., those in ¯) are all odd while 4x is always even. However, the linear congruence 4x ≡ 6 (mod 10) has two solutions, namely, x = 4 and x = 9. The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6.
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...