enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The quadratic excess E (p) is the number of quadratic residues on the range (0, p /2) minus the number in the range (p /2, p) (sequence A178153 in the OEIS). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  7. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Since of these only g(1) and g(7) are 0 mod 16 we can lift only 1 and 7 to modulo 16, giving 1, 7, 9, and 15 mod 16. Of these, only 7 and 9 give g(x) = 0 mod 32, so these can be raised giving 7, 9, 23, and 25 mod 32. It turns out that for every integer k ≥ 3, there are four liftings of 1 mod 2 to a root of g(x) mod 2 k.

  8. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies. exactly when n is a prime number.

  9. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    Dirichlet character. In analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] that is, is completely multiplicative. (gcd is the greatest common divisor)