Search results
Results from the WOW.Com Content Network
An interesting point to note is the fact that the measured self-inductance of the coil does not change even on taking dielectric loss within the capacitor into account. Another advantage of using this modified bridge is that unlike the variable capacitor used in Maxwell bridge , it makes use of a fixed capacitor which is relatively quite cheaper.
the inductance of a solenoid follows as =. A table of inductance for short solenoids of various diameter to length ratios has been calculated by Dellinger, Whittmore, and Ould. [18] This, and the inductance of more complicated shapes, can be derived from Maxwell's equations. For rigid air-core coils, inductance is a function of coil geometry ...
When this is combined with the definition of inductance =, it follows that the inductance of a solenoid is given by: =. Therefore, for air-core coils, inductance is a function of coil geometry and number of turns, and is independent of current.
The solenoid can be useful for positioning, stopping mid-stroke, or for low velocity actuation; especially in a closed loop control system. A uni-directional solenoid would actuate against an opposing force or a dual solenoid system would be self cycling. The proportional concept is more fully described in SAE publication 860759 (1986).
The Wheatstone bridge has also been generalised to measure impedance in AC circuits, and to measure resistance, inductance, capacitance, and dissipation factor separately. Variants are known as the Wien bridge, Maxwell bridge, and Heaviside bridge (used to measure the effect of mutual inductance). [3]
A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance (usually of low Q value) in terms of calibrated resistance and inductance or resistance and capacitance. [1] When the calibrated components are a parallel resistor and capacitor, the bridge is known as a Maxwell bridge.
A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms