enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, = =). This theorem is one of the main reasons why 1 is not considered a prime number : if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 ...

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    For each odd prime power the corresponding factor (/) is the cyclic group of order () =, which may further factor into cyclic groups of prime-power orders. For powers of 2 the factor ( Z / 2 k Z ) × {\displaystyle (\mathbb {Z} /{2^{k}}\mathbb {Z} )^{\times }} is not cyclic unless k = 0, 1, 2, but factors into cyclic groups as described above.

  6. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Another proof, by the Swiss mathematician Leonhard Euler, relies on the fundamental theorem of arithmetic: that every integer has a unique prime factorization.What Euler wrote (not with this modern notation and, unlike modern standards, not restricting the arguments in sums and products to any finite sets of integers) is equivalent to the statement that we have [9]

  7. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions , many of these numbers are used in traditional systems of measurement and engineering designs.

  8. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    For prime powers, efficient classical factorization algorithms exist, [22] hence the rest of the quantum algorithm may assume that is not a prime power. If those easy cases do not produce a nontrivial factor of N {\displaystyle N} , the algorithm proceeds to handle the remaining case.