Search results
Results from the WOW.Com Content Network
The feature space for the minority class for which we want to oversample could be beak length, wingspan, and weight (all continuous). To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space). To create a synthetic data point, take the vector between one of those k neighbors, and the current ...
Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.
A cheaper method would be to use a stratified sample with urban and rural strata. The rural sample could be under-represented in the sample, but weighted up appropriately in the analysis to compensate. More generally, data should usually be weighted if the sample design does not give each individual an equal chance of being selected.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Outliers, missing data and non-normality can all adversely affect the validity of statistical analysis. It is appropriate to study the data and repair real problems before analysis begins. "[I]n any scatter diagram there will be some points more or less detached from the main part of the cloud: these points should be rejected only for cause."
If the data are missing completely at random, then listwise deletion does not add any bias, but it does decrease the power of the analysis by decreasing the effective sample size. For example, if 1000 cases are collected but 80 have missing values, the effective sample size after listwise deletion is 920.
Generally speaking, there are three main approaches to handle missing data: (1) Imputation—where values are filled in the place of missing data, (2) omission—where samples with invalid data are discarded from further analysis and (3) analysis—by directly applying methods unaffected by the missing values. One systematic review addressing ...
In the panel data fixed effects estimator dummies are created for each of the units in cross-sectional data (e.g. firms or countries) or periods in a pooled time-series. However in such regressions either the constant term has to be removed, or one of the dummies removed making this the base category against which the others are assessed, for ...