Search results
Results from the WOW.Com Content Network
Cyclohexanethiol is a thiol with the formula C 6 H 11 SH. It is a colorless liquid with a strong odor. Preparation. It was first prepared by the free-radical reaction ...
Cyclohexanol is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [5]. 2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid.
The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made up of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent. An ideal solution has a null enthalpy of mixing.
Zwolinski and Wilhoit defined, in 1972, "gross" and "net" values for heats of combustion. In the gross definition the products are the most stable compounds, e.g. H 2 O (l), Br 2 (l), I 2 (s) and H 2 SO 4 (l). In the net definition the products are the gases produced when the compound is burned in an open flame, e.g. H 2 O (g), Br 2 (g), I 2 (g ...
The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,
In thermochemistry, the heat of dilution, or enthalpy of dilution, refers to the enthalpy change associated with the dilution process of a component in a solution at a constant pressure. If the initial state of the component is a pure liquid (presuming the solution is liquid), the dilution process is equal to its dissolution process and the ...
Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. is a state function, meaning that is independent of processes occurring between initial and final states.
Enthalpy of transition, Δ trs H o: 6.7 kJ/mol at –87.0 °C crystal II → crystal I Entropy of transition, Δ trs S o: 36 J/(mol·K) at –87.0 °C crystal II → crystal I Liquid properties Std enthalpy change of formation, Δ f H o liquid –156.4 kJ/mol Standard molar entropy, S o liquid: 204 J/(mol K) Enthalpy of combustion, Δ c H o ...