enow.com Web Search

  1. Ad

    related to: data preparation using python

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.

  4. ArviZ - Wikipedia

    en.wikipedia.org/wiki/ArviZ

    ArviZ also provides a common data structure for manipulating and storing data commonly arising in Bayesian analysis, like posterior samples or observed data. ArviZ is an open source project, developed by the community and is an affiliated project of NumFOCUS .

  5. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process as additional steps. The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the ...

  7. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Python, an open-source programming language widely used in data mining and machine learning. R , an open-source programming language for statistical computing and graphics. Together with Python one of the most popular languages for data science.

  8. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").

  9. PolyAnalyst - Wikipedia

    en.wikipedia.org/wiki/PolyAnalyst

    PolyAnalyst is a data science software platform developed by Megaputer Intelligence that provides an environment for text mining, data mining, machine learning, and predictive analytics. It is used by Megaputer to build tools with applications to health care , business management , insurance , and other industries.

  1. Ad

    related to: data preparation using python