enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".

  3. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies ⁡ [(())] ⁡ [⁡ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...

  4. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    Second and third bits: Encoding method used for this block type: 00: A stored (a.k.a. raw or literal) section, between 0 and 65,535 bytes in length; 01: A static Huffman compressed block, using a pre-agreed Huffman tree defined in the RFC; 10: A dynamic Huffman compressed block, complete with the Huffman table supplied; 11: Reserved—don't use.

  5. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    In order for a symbol code scheme such as the Huffman code to be decompressed, the same model that the encoding algorithm used to compress the source data must be provided to the decoding algorithm so that it can use it to decompress the encoded data. In standard Huffman coding this model takes the form of a tree of variable-length codes, with ...

  6. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  7. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  8. Asymmetric numeral systems - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_numeral_systems

    If symbols are assigned in ranges of lengths being powers of 2, we would get Huffman coding. For example, a->0, b->100, c->101, d->11 prefix code would be obtained for tANS with "aaaabcdd" symbol assignment. Example of generation of tANS tables for m = 3 size alphabet and L = 16 states, then applying them for stream decoding.

  9. Threaded code - Wikipedia

    en.wikipedia.org/wiki/Threaded_code

    A Huffman code is a variable-length string of bits that identifies a unique token. A Huffman-threaded interpreter locates subroutines using an index table or a tree of pointers that can be navigated by the Huffman code. Huffman-threaded code is one of the most compact representations known for a computer program.