Search results
Results from the WOW.Com Content Network
Audio feedback (also known as acoustic feedback, simply as feedback, or the Larsen effect) is a special kind of positive feedback which occurs when a sound loop exists between an audio input (for example, a microphone or guitar pickup) and an audio output (for example, a loudly-amplified loudspeaker).
This is an example of a positive feedback loop. The ability of these channels to assume a closed-inactivated state causes the refractory period and is critical for the propagation of action potentials down an axon .
An effector is the target acted on, to bring about the change back to the normal state. At the cellular level, effectors include nuclear receptors that bring about changes in gene expression through up-regulation or down-regulation and act in negative feedback mechanisms. An example of this is in the control of bile acids in the liver. [4]
The Hodgkin cycle represents a positive feedback loop in which an initial membrane depolarization leads to uncontrolled deflection of the membrane potential to near V Na. The initial depolarization must reach or surpass a certain threshold in order to activate voltage-gated Na + channels .
Low-T3 syndrome and high-T3 syndrome: Consequences of step-up hypodeiodination, e.g. in critical illness as an example for type 1 allostasis, [20] or hyperdeiodination, as in type 2 allostasis, including posttraumatic stress disorder. [12] Resistance to thyroid hormone: Feedback loop interrupted on the level of pituitary thyroid hormone receptors.
In females, the positive feedback loop between estrogen and luteinizing hormone help to prepare the follicle in the ovary and the uterus for ovulation and implantation. When the egg is released, the empty follicle sac begins to produce progesterone to inhibit the hypothalamus and the anterior pituitary thus stopping the estrogen-LH positive ...
As more chemicals are released more platelets stick and release their chemicals; creating a platelet plug and continuing the process in a positive feedback loop. Platelets alone are responsible for stopping the bleeding of unnoticed wear and tear of our skin on a daily basis. This is referred to as primary hemostasis. [5] [7]
This forms a positive feedback loop: an injury causes cytokines, a type of signaling molecule, to be released, which induces BSCB disruption that allows white blood cell migration, followed by the white blood cells releasing more cytokines within the spinal cord, keeping the BSCB hyperpermeable. It has been found that blocking the signaling of ...