Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. [2]
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting.
An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.
Atom, an open source cross-platform IDE with autocomplete, help and more Python features under package extensions. Codelobster, a cross-platform IDE for various languages, including Python. EasyEclipse, an open source IDE for Python and other languages. Eclipse,with the Pydev plug-in. Eclipse supports many other languages as well.
Dask is an open-source Python library for parallel computing. Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy. It also exposes low-level APIs ...
Apache Doris is an open-source real-time analytical database based on MPP architecture. It can support both high-concurrency point query scenarios and high-throughput complex analysis. [31] Apache Druid is a popular open-source distributed data store for OLAP queries that is used at scale in production by various organizations.
In other cases the aggregate cannot be computed without analyzing the entire set at once, though in some cases approximations can be distributed; examples include DISTINCT COUNT (Count-distinct problem), MEDIAN, and MODE. Such functions are called decomposable aggregation functions [4] or decomposable aggregate functions.
For example, a researcher collects, collates, or compiles aggregate data through utilising multiple mechanisms of social research, including inventory, interview, an opinionnaire, and a questionnaire or schedule. Official or non-official agencies also collect and compile aggregate data on an ongoing basis through utilising infrastructures ...