enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Xgrid - Wikipedia

    en.wikipedia.org/wiki/Xgrid

    Xgrid is a proprietary grid computing program and protocol developed by the Advanced Computation Group subdivision of Apple Inc. [3]It provides network administrators a method of creating a computing cluster, which allows them to exploit previously unused computational power for calculations that can be divided easily into smaller operations, such as Mandelbrot maps.

  3. Key clustering - Wikipedia

    en.wikipedia.org/wiki/Key_clustering

    Key or hash function should avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to skyrocket, even if the load factor is low and collisions are infrequent. The popular multiplicative hash [1] is claimed to have particularly poor clustering behaviour. [2]

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. Primary clustering - Wikipedia

    en.wikipedia.org/wiki/Primary_clustering

    In computer programming, primary clustering is a phenomenon that causes performance degradation in linear-probing hash tables.The phenomenon states that, as elements are added to a linear probing hash table, they have a tendency to cluster together into long runs (i.e., long contiguous regions of the hash table that contain no free slots).

  7. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .

  8. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    One way of modeling outliers in model-based clustering is to include an additional mixture component that is very dispersed, with for example a uniform distribution. [ 6 ] [ 16 ] Another approach is to replace the multivariate normal densities by t {\displaystyle t} -distributions, [ 17 ] with the idea that the long tails of the t ...

  9. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Similar to other clustering evaluation metrics such as Silhouette score, the CH index can be used to find the optimal number of clusters k in algorithms like k-means, where the value of k is not known a priori. This can be done by following these steps: Perform clustering for different values of k. Compute the CH index for each clustering result.