Search results
Results from the WOW.Com Content Network
Nonmetals tend to gain electrons during chemical reactions, in contrast to metals which tend to donate electrons. This behavior is related to the stability of electron configurations in the noble gases, which have complete outer shells as summarized by the duet and octet rules of thumb, more correctly explained in terms of valence bond theory .
Nonmetals have a wide range of properties, for instance the nonmetal diamond is the hardest known material, while the nonmetal molybdenum disulfide is a solid lubricants used in space. [47] There are some properties specific to them not having electrons at the Fermi energy.
Hydrogen gas is a reducing agent when it reacts with non-metals and an oxidizing agent when it reacts with metals. 2 Li (s) + H 2(g) → 2 LiH (s) [ a ] Hydrogen (whose reduction potential is 0.0) acts as an oxidizing agent because it accepts an electron donation from the reducing agent lithium (whose reduction potential is -3.04), which causes ...
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
It is the softest of the commonly recognised metalloids. Tellurium reacts with boiling water, or when freshly precipitated even at 50 °C, to give the dioxide and hydrogen: Te + 2 H 2 O → TeO 2 + 2 H 2. It has a melting point of 450 °C and a boiling point of 988 °C. Tellurium has a polyatomic (CN 2) hexagonal crystalline structure.
Valence electrons are the outermost electrons of an atom and are normally the only electrons that participate in chemical bonding. Atoms with full valence electron shells are extremely stable and therefore do not tend to form chemical bonds and have little tendency to gain or lose electrons. [35]
Electron atomic and molecular orbitals A Bohr diagram of lithium. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1]
This line has been called the amphoteric line, [2] the metal-nonmetal line, [3] the metalloid line, [4] [5] the semimetal line, [6] or the staircase. [2] [n 1] While it has also been called the Zintl border [8] or the Zintl line [9] [10] these terms instead refer to a vertical line sometimes drawn between groups 13 and 14.