Search results
Results from the WOW.Com Content Network
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.
Computable Document Format (CDF) is an electronic document format [1] designed to allow authoring dynamically generated, interactive content. [2] CDF was created by Wolfram Research , and CDF files can be created using Mathematica . [ 3 ]
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
Instead of fitting moments, QPDs are typically fit to empirical CDF data with linear least squares. Johnson's S U {\displaystyle S_{U}} -distribution is also used in the modelling of the invariant mass of some heavy mesons in the field of B-physics .
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ().
where is the normal cumulative distribution function. The derivation of the formula is provided in the Talk page. The partial expectation formula has applications in insurance and economics, it is used in solving the partial differential equation leading to the Black–Scholes formula.
The hyperbolic secant distribution shares many properties with the standard normal distribution: it is symmetric with unit variance and zero mean, median and mode, and its probability density function is proportional to its characteristic function.