enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Universal set - Wikipedia

    en.wikipedia.org/wiki/Universal_set

    In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

  3. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  6. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.

  7. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    For instance, when investigating properties of the real numbers R (and subsets of R), R may be taken as the universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories. Given a universal set U and a subset A of U, the complement of A (in U) is defined as

  8. Universe (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Universe_(mathematics)

    However, once subsets of a given set X (in Cantor's case, X = R) are considered, the universe may need to be a set of subsets of X. (For example, a topology on X is a set of subsets of X.) The various sets of subsets of X will not themselves be subsets of X but will instead be subsets of PX, the power set of X.

  9. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    Euler diagram illustrating that the set of "animals with four legs" is a subset of "animals", but the set of "minerals" is a disjoint set (it has no members in common) with "animals" Euler diagram showing the relationships between different Solar System objects