enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Universal set - Wikipedia

    en.wikipedia.org/wiki/Universal_set

    In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  4. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.

  5. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Using the universal set consisting of all partitions of the n-set into k (possibly empty) distinguishable boxes, A 1, A 2, ..., A k, and the properties P i meaning that the partition has box A i empty, the principle of inclusion–exclusion gives an answer for the related result.

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    For instance, when investigating properties of the real numbers R (and subsets of R), R may be taken as the universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories. Given a universal set U and a subset A of U, the complement of A (in U) is defined as

  7. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...