Search results
Results from the WOW.Com Content Network
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.
Perspective-n-Point [1] is the problem of estimating the pose of a calibrated camera given a set of n 3D points in the world and their corresponding 2D projections in the image.
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation.
OpenCV's Cascade Classifiers support LBPs as of version 2. VLFeat , an open source computer vision library in C (with bindings to multiple languages including MATLAB) has an implementation . LBPLibrary is a collection of eleven Local Binary Patterns (LBP) algorithms developed for background subtraction problem.
Gary Bradski is an American scientist, engineer, entrepreneur, and author. He co-founded Industrial Perception, a company that developed perception applications for industrial robotic application (since acquired by Google in 2012 [2]) and has worked on the OpenCV Computer Vision library, as well as published a book on that library.
The Harris corner detector is a corner detection operator that is commonly used in computer vision algorithms to extract corners and infer features of an image. It was first introduced by Chris Harris and Mike Stephens in 1988 upon the improvement of Moravec's corner detector. [1]
GIMP Tutorial – using the Perspective Tool by Billy Kerr on YouTube. Shows how to do a perspective transform using GIMP. Allan Jepson (2010) Planar Homographies from Department of Computer Science, University of Toronto. Includes 2D homography from four pairs of corresponding points, mosaics in image processing, removing perspective ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]