Search results
Results from the WOW.Com Content Network
Similarly, the singular values of any matrix can be viewed as the magnitude of the semiaxis of an -dimensional ellipsoid in -dimensional space, for example as an ellipse in a (tilted) 2D plane in a 3D space. Singular values encode magnitude of the semiaxis, while singular vectors encode direction.
The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...
If one of the degrees is zero (that is, the corresponding polynomial is a nonzero constant polynomial), then there are zero rows consisting of coefficients of the other polynomial, and the Sylvester matrix is a diagonal matrix of dimension the degree of the non-constant polynomial, with the all diagonal coefficients equal to the constant ...
In mathematics, in the field of control theory, a Sylvester equation is a matrix equation of the form: [1] + =. It is named after English mathematician James Joseph Sylvester. Then given matrices A, B, and C, the problem is to find the possible matrices X that obey this equation.
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...