enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lazy evaluation - Wikipedia

    en.wikipedia.org/wiki/Lazy_evaluation

    In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:

  3. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    Vector autoregressions are flexible statistical models that typically include many free parameters. Given the limited length of standard macroeconomic datasets relative to the vast number of parameters available, Bayesian methods have become an increasingly popular way of dealing with the problem of over-parameterization. As the ratio of ...

  4. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    In general, with a normally-distributed sample mean, Ẋ, and with a known value for the standard deviation, σ, a 100(1-α)% confidence interval for the true μ is formed by taking Ẋ ± e, with e = z 1-α/2 (σ/n 1/2), where z 1-α/2 is the 100(1-α/2)% cumulative value of the standard normal curve, and n is the number of data values in that ...

  5. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    [3] [4] [5] The primary aim of estimation methods is to report an effect size (a point estimate) along with its confidence interval, the latter of which is related to the precision of the estimate. [6] The confidence interval summarizes a range of likely values of the underlying population effect.

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    One can normalize input scores by assuming that the sum is zero (subtract the average: where =), and then the softmax takes the hyperplane of points that sum to zero, =, to the open simplex of positive values that sum to 1 =, analogously to how the exponent takes 0 to 1, = and is positive.

  9. Control variates - Wikipedia

    en.wikipedia.org/wiki/Control_variates

    Let the unknown parameter of interest be , and assume we have a statistic such that the expected value of m is μ: [] =, i.e. m is an unbiased estimator for μ. Suppose we calculate another statistic t {\displaystyle t} such that E [ t ] = τ {\displaystyle \mathbb {E} \left[t\right]=\tau } is a known value.

  1. Related searches free estimate of property value is called the number 1 in python 6 3

    free estimate of property value is called the number 1 in python 6 3 5