enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Null result - Wikipedia

    en.wikipedia.org/wiki/Null_result

    In statistical hypothesis testing, a null result occurs when an experimental result is not significantly different from what is to be expected under the null hypothesis; its probability (under the null hypothesis) does not exceed the significance level, i.e., the threshold set prior to testing for rejection of the null hypothesis.

  3. Coverage error - Wikipedia

    en.wikipedia.org/wiki/Coverage_error

    This can bias estimates calculated using survey data. [3] For example, a researcher may wish to study the opinions of registered voters (target population) by calling residences listed in a telephone directory (sampling frame). Undercoverage may occur if not all voters are listed in the phone directory.

  4. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their ...

  5. Total survey error - Wikipedia

    en.wikipedia.org/wiki/Total_survey_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  6. Participation bias - Wikipedia

    en.wikipedia.org/wiki/Participation_bias

    Participation bias or non-response bias is a phenomenon in which the results of studies, polls, etc. become non-representative because the participants disproportionately possess certain traits which affect the outcome. These traits mean the sample is systematically different from the target population, potentially resulting in biased estimates.

  7. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    An example is that males are less likely to fill in a depression survey but this has nothing to do with their level of depression, after accounting for maleness. Depending on the analysis method, these data can still induce parameter bias in analyses due to the contingent emptiness of cells (male, very high depression may have zero entries).

  8. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  9. Response bias - Wikipedia

    en.wikipedia.org/wiki/Response_bias

    A survey using a Likert style response set. This is one example of a type of survey that can be highly vulnerable to the effects of response bias. Response bias is a general term for a wide range of tendencies for participants to respond inaccurately or falsely to questions.