Search results
Results from the WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
As a special case, this includes: if some column is such that all its entries are zero, then the determinant of that matrix is 0. Adding a scalar multiple of one column to another column does not change the value of the determinant. This is a consequence of multilinearity and being alternative: by multilinearity the determinant changes by a ...
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.
For example, to say that 14 × 15 was 201 would be unreasonable. Since 15 is a multiple of 5, the product should be as well. Likewise, 14 is a multiple of 2, so the product should be even. Furthermore, any number which is a multiple of both 5 and 2 is necessarily a multiple of 10, and in the decimal system would end with a 0. The correct answer ...
In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b.
Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =
The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4] As a consequence of the third point, if a and b are coprime and br ≡ bs (mod a), then r ≡ s (mod a). [5] That is, we may "divide by b" when working modulo a.
gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true: