Search results
Results from the WOW.Com Content Network
A zero-sum game is also called a strictly competitive game, while non-zero-sum games can be either competitive or non-competitive. Zero-sum games are most often solved with the minimax theorem which is closely related to linear programming duality, [5] or with Nash equilibrium. Prisoner's Dilemma is a classic non-zero-sum game. [6]
In the mathematical theory of games, in particular the study of zero-sum continuous games, not every game has a minimax value. This is the expected value to one of the players when both play a perfect strategy (which is to choose from a particular PDF). This article gives an example of a zero-sum game that has no value. It is due to Sion and ...
The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928, [2] which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
In game theory, a strictly determined game is a two-player zero-sum game that has at least one Nash equilibrium with both players using pure strategies.The value of a strictly determined game is equal to the value of the equilibrium outcome.
A game that requires mixed strategies is defined as determined if a strategy exists that yields a minimum expected value (over possible counter-strategies) that exceeds a given value. Against this definition, all finite two-player zero-sum games are clearly determined.
In game theory terms, an expectiminimax tree is the game tree of an extensive-form game of perfect, but incomplete information. In the traditional minimax method, the levels of the tree alternate from max to min until the depth limit of the tree has been reached. In an expectiminimax tree, the "chance" nodes are interleaved with the max and min ...