Search results
Results from the WOW.Com Content Network
The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: X → Y has a homotopy inverse g: Y → X, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes.
CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex.
on homology is an isomorphism for all integers n. (Here H n (X) is the object of A defined as the kernel of X n → X n−1 modulo the image of X n+1 → X n.) The resulting homotopy category is called the derived category D(A).
Typically these only hold for larger dimensions. The first such result was Hans Freudenthal's suspension theorem, published in 1937. Stable algebraic topology flourished between 1945 and 1966 with many important results. [19] In 1953 George W. Whitehead showed that there is a metastable range for the homotopy groups of spheres.
In algebraic topology and abstract algebra, homology (in part from Greek ὁμός homos "identical") is a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object such as a topological space or a group.
Dually to the construction of group cohomology there is the following definition of group homology: given a G-module M, set DM to be the submodule generated by elements of the form g·m − m, g ∈ G, m ∈ M.
in + (), which Whitehead defined as the image of the element of ( ()) under the J-homomorphism. Taking a limit as q tends to infinity gives the stable J -homomorphism in stable homotopy theory :
The Whitehead group of a connected CW-complex or a manifold M is equal to the Whitehead group (()) of the fundamental group of M.. If G is a group, the Whitehead group is defined to be the cokernel of the map {} ([]) which sends (g, ±1) to the invertible (1,1)-matrix (±g).