Search results
Results from the WOW.Com Content Network
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof , but can be derived from a small number of properties taken as axioms .
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The complement of the intersection of two sets is the same as the union of their complements; or not (A or B) = (not A) and (not B) not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning at least one of A or B rather than an "exclusive or" that means exactly one of A or B. De Morgan's law with set subtraction operation
The cofinite topology or the finite complement topology is a topology that can be defined on every set . It has precisely the empty set and all cofinite subsets of X {\displaystyle X} as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets, or the whole of X . {\displaystyle X.}
In point-set topology, Kuratowski's closure-complement problem asks for the largest number of distinct sets obtainable by repeatedly applying the set operations of closure and complement to a given starting subset of a topological space. The answer is 14. This result was first published by Kazimierz Kuratowski in 1922. [1]