enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    [1] [2] For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.

  3. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state.

  4. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    An object in the plastic deformation range, however, will first have undergone elastic deformation, which is undone simply be removing the applied force, so the object will return part way to its original shape. Soft thermoplastics have a rather large plastic deformation range as do ductile metals such as copper, silver, and gold.

  5. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.

  6. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed.

  7. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    A phenomenological uniaxial stress–strain curve showing typical work hardening plastic behavior of materials in uniaxial compression. For work hardening materials the yield stress increases with increasing plastic deformation. The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p).

  8. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations.

  9. Plastic bending - Wikipedia

    en.wikipedia.org/wiki/Plastic_bending

    Plastic bending [1] is a nonlinear behavior particular to members made of ductile materials that frequently achieve much greater ultimate bending strength than indicated by a linear elastic bending analysis. In both the plastic and elastic bending analyses of a straight beam, it is assumed that the strain distribution is linear about the ...