enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  4. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The angle between the horizontal line and the shown diagonal is ⁠ 1 / 2 ⁠ (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 / 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin ⁠ 1 / 2 ⁠ (a + b) and cos ⁠ 1 / 2 ⁠ (a + b) are the ratios of the actual distances to ...

  5. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos ⁡ x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range ⁠ π / 2 ⁠ < θ ≤ π. To do this we let t = θ − ⁠ π / 2 ⁠, t will now be in the range 0 < t ≤ π/2. We can then make use of squared versions of some basic shift identities ...

  7. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.

  8. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  9. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    Another important application is the integration of non-trigonometric functions: a common technique which involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. One of the most prominent examples of trigonometric identities involves the equation ...