Search results
Results from the WOW.Com Content Network
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
A representation of a three-dimensional Cartesian coordinate system. In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.
The vector of coordinates forms the coordinate vector or n-tuple (x 1, x 2, …, x n). Each coordinate x i may be parameterized a number of parameters t. One parameter x i (t) would describe a curved 1D path, two parameters x i (t 1, t 2) describes a curved 2D surface, three x i (t 1, t 2, t 3) describes a curved 3D volume of space, and so on.
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude .
latitude of the points; U 1 = arctan( (1 − ƒ) tan Φ 1), U 2 = arctan( (1 − ƒ) tan Φ 2) reduced latitude (latitude on the auxiliary sphere) L 1, L 2: longitude of the points; L = L 2 − L 1: difference in longitude of two points; λ: Difference in longitude of the points on the auxiliary sphere; α 1, α 2: forward azimuths at the ...