enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Organ flue pipe scaling - Wikipedia

    en.wikipedia.org/wiki/Organ_flue_pipe_scaling

    Scaling is the ratio of an organ pipe's diameter to its length. The scaling of a pipe is a major influence on its timbre. Reed pipes are scaled according to different formulas than for flue pipes. In general, the larger the diameter of a given pipe at a given pitch, the fuller and more fundamental the sound becomes.

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)

  4. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    Note that for the case of a circular pipe, D H = 4 π R 2 2 π R = 2 R {\displaystyle D_{\text{H}}={\frac {4\pi R^{2}}{2\pi R}}=2R} The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number , which prefers a single variable for flow analysis rather than ...

  5. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  6. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Julius Weisbach was certainly not the first to introduce a formula correlating the length and diameter of a pipe to the square of the fluid velocity. Antoine Chézy (1718-1798), in fact, had published a formula in 1770 that, although referring to open channels (i.e., not under pressure), was formally identical to the one Weisbach would later ...

  8. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Volume velocity, volume flux φ V (no standard symbol) = m 3 s −1 [L] 3 [T] −1: Mass current per unit volume: s (no standard symbol) = / kg m −3 s −1 [M] [L] −3 [T] −1: Mass current, mass flow rate: I m

  9. Pipe (fluid conveyance) - Wikipedia

    en.wikipedia.org/wiki/Pipe_(fluid_conveyance)

    Since the outside diameter is fixed for a given pipe size, the inside diameter will vary depending on the wall thickness of the pipe. For example, 2" Schedule 80 pipe has thicker walls and therefore a smaller inside diameter than 2" Schedule 40 pipe. Steel pipe has been produced for about 150 years.