Search results
Results from the WOW.Com Content Network
Phenylacetaldehyde is an aldehyde that consists of acetaldehyde bearing a phenyl substituent; the parent member of the phenylacetaldehyde class of compounds. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.
[3] [4] In both species, it is subsequently metabolized into 4-hydroxyphenylacetate by aldehyde dehydrogenase (ALDH) enzymes in humans and the phenylacetaldehyde dehydrogenase (feaB) enzyme in E. coli. [3] [4] [5] The condensation of 4-hydroxyphenylacetaldehyde and dopamine is a key step in the biosynthesis of benzylisoquinoline alkaloids.
The Wacker process or the Hoechst-Wacker process (named after the chemical companies of the same name) refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride and copper(II) chloride as the catalyst. [1]
DOPAL is known to be a dopaminergic neurotoxin. [2] [4] [3] It is much more potent in this regard than dopamine itself and other metabolites of dopamine.[2] [4] [3] According to the catecholaldehyde hypothesis, DOPAL plays a role in aging-related dopaminergic neurodegeneration and in the pathogenesis of Parkinson's disease.
The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart , uses either ammonium formate or formamide as the nitrogen donor and reducing agent . It requires high temperatures, usually between 120 and 130 °C; for the formamide variant, the temperature can be greater than 165 °C.
The Fischer indole synthesis is a chemical reaction that produces the aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions. [1] [2] The reaction was discovered in 1883 by Emil Fischer. Today antimigraine drugs of the triptan class are often synthesized by this method. The Fischer ...
It is also the oxidation product of phenethylamine in humans following metabolism by monoamine oxidase and subsequent metabolism of the intermediate product, phenylacetaldehyde, by the aldehyde dehydrogenase enzyme; these enzymes are also found in many other organisms.
An example is shown below. [9] Scheme 2. An intramolecular benzoin addition. Since the products of the reaction are thermodynamically controlled, the retro benzoin addition can be synthetically useful. If a benzoin or acyloin can be synthesized by another method, then they can be converted into the component ketones using cyanide or thiazolium ...