Search results
Results from the WOW.Com Content Network
Neural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin.
Most sensory systems have a quiescent state, that is, the state that a sensory system converges to when there is no input. [citation needed] This is well-defined for a linear time-invariant system, whose input space is a vector space, and thus by definition has a point of zero. It is also well-defined for any passive sensory system, that is, a ...
Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded receptor potentials. [1] This process is called sensory transduction. The cell bodies of the sensory neurons are located in the dorsal root ganglia of the spinal cord ...
For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to ...
Sensory organs are organs that sense and transduce stimuli. Humans have various sensory organs (i.e. eyes, ears, skin, nose, and mouth) that correspond to a respective visual system (sense of vision), auditory system (sense of hearing), somatosensory system (sense of touch), olfactory system (sense of smell), and gustatory system (sense of taste).
Sensory processing is the process that organizes and distinguishes sensation (sensory information) from one's own body and the environment, thus making it possible to use the body effectively within the environment
The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a sensory neuronal response in specific organisms. [1]Complexity of the receptive field ranges from the unidimensional chemical structure of odorants to the multidimensional spacetime of human visual field, through the bidimensional skin surface, being a receptive field for touch perception.
Deforming the corpuscle creates a generator potential in the sensory neuron arising within it. This is a graded response: the greater the deformation, the greater the generator potential. If the generator potential reaches threshold, a volley of action potentials (nerve impulses) are triggered at the first node of Ranvier of the sensory neuron.