enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    Richard Dedekind showed that every number field possesses an integral basis, allowing him to define the discriminant of an arbitrary number field. [16] The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ...

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.

  4. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root − b 2 a , {\displaystyle -{\frac {b}{2a}},} sometimes called a repeated or double root or two equal roots.

  6. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    In particular √ D belongs to [], being a root of the equation x 2 − D = 0, which has 4D as its discriminant. The square root of any integer is a quadratic integer, as every integer can be written n = m 2 D, where D is a square-free integer, and its square root is a root of x 2 − m 2 D = 0.

  7. Sextic equation - Wikipedia

    en.wikipedia.org/wiki/Sextic_equation

    Graph of a sextic function, with 6 real roots (crossings of the x axis) and 5 critical points. Depending on the number and vertical locations of minima and maxima, the sextic could have 6, 4, 2, or no real roots. The number of complex roots equals 6 minus the number of real roots. In algebra, a sextic (or hexic) polynomial is a polynomial of ...

  8. Cubic field - Wikipedia

    en.wikipedia.org/wiki/Cubic_field

    It has the smallest discriminant of all totally real cubic fields, namely 49. [4] The field obtained by adjoining to Q a root of x 3 + x 2 − 3x − 1 is an example of a totally real cubic field that is not cyclic. Its discriminant is 148, the smallest discriminant of a non-cyclic totally real cubic field. [5]

  9. Separable polynomial - Wikipedia

    en.wikipedia.org/wiki/Separable_polynomial

    In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial. [1] This concept is closely related to square-free polynomial. If K is a perfect field then the two concepts coincide.