Search results
Results from the WOW.Com Content Network
It is possible to divide an equilateral triangle into three congruent non-convex pentagons, meeting at the center of the triangle, and to tile the plane with the resulting three-pentagon unit. [21] A similar method can be used to subdivide squares into four congruent non-convex pentagons, or regular hexagons into six congruent non-convex ...
Convex equilateral pentagon dissected into 3 triangles, which helps to calculate the value of angle δ as a function of α and β. When a convex equilateral pentagon is dissected into triangles, two of them appear as isosceles (triangles in orange and blue) while the other one is more general (triangle in green).
The area of the Varignon parallelogram equals half the area of the original quadrilateral. This is true in convex, concave and crossed quadrilaterals provided the area of the latter is defined to be the difference of the areas of the two triangles it is composed of. [32]
In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7]
A polygon that is monotone with respect to the y-axis is called y-monotone. A monotone polygon with n vertices can be triangulated in O(n) time. Assuming a given polygon is y-monotone, the greedy algorithm begins by walking on one chain of the polygon from top to bottom while adding diagonals whenever it is possible. [1]
In plane geometry, a lune (from Latin luna 'moon') is the concave-convex region bounded by two circular arcs. [1] It has one boundary portion for which the connecting segment of any two nearby points moves outside the region and another boundary portion for which the connecting segment of any two nearby points lies entirely inside the region.
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
A compound of two "line segment" digons, as the two possible alternations of a square (note the vertex arrangement). The apeirogonal hosohedron , containing infinitely narrow digons. Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees).