Search results
Results from the WOW.Com Content Network
Although these parameters limit the usefulness of the RTK technique for general navigation, the technique is perfectly suited to roles like surveying. In this case, the base station is located at a known surveyed location, often a benchmark, and the mobile units can then produce a highly accurate map by taking fixes relative to that point.
It is the most accurate technique currently available to determine the geocentric position of an Earth satellite, allowing for the precise calibration of radar altimeters and separation of long-term instrumentation drift from secular changes in ocean surface topography. Satellite laser ranging contributes to the definition of the international ...
Total stations are the primary survey instrument used in mining surveying. A total station is used to record the absolute location of the tunnel walls, ceilings (backs), and floors, as the drifts of an underground mine are driven. The recorded data are then downloaded into a CAD program and compared to the designed layout of the tunnel.
RTK may refer to: Science and technology. Real-time kinematic positioning, a technique for precision satellite navigation; Receptor tyrosine kinase, ...
Real-time kinematic positioning (RTK GPS) is employed frequently in survey mapping. In that measurement technique, unknown points can get quickly tied into nearby terrestrial known points. One purpose of point positioning is the provision of known points for mapping measurements, also known as (horizontal and vertical) control.
A direct-readout theodolite, manufactured in the Soviet Union in 1958 and used for topographic surveying. A theodolite (/ θ i ˈ ɒ d ə ˌ l aɪ t /) [1] is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes.
Triangulated irregular network TIN overlaid with contour lines. In computer graphics, a triangulated irregular network (TIN) [1] is a representation of a continuous surface consisting entirely of triangular facets (a triangle mesh), used mainly as Discrete Global Grid in primary elevation modeling.
Precise positioning is increasingly used in the fields including robotics, autonomous navigation, agriculture, construction, and mining. [2]The major weaknesses of PPP, compared with conventional consumer GNSS methods, are that it takes more processing power, it requires an outside ephemeris correction stream, and it takes some time (up to tens of minutes) to converge to full accuracy.