Search results
Results from the WOW.Com Content Network
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre transformation; Möbius transformation; Perspective transform (computer graphics) Sequence transform; Watershed transform (digital image processing) Wavelet transform (orthonormal) Y-Δ transform (electrical circuits)
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
Affine motion estimation is a technique used in computer vision and image processing to estimate the motion between two images or frames. It assumes that the motion can be modeled as an affine transformation (translation + rotation + zooming), which is a linear transformation followed by a translation.
Image registration algorithms can also be classified according to the transformation models they use to relate the target image space to the reference image space. The first broad category of transformation models includes linear transformations, which include rotation, scaling, translation, and other affine transforms. [5]
Graphical view of the affine transformation. The registration of an image to a geographic space is essentially the transformation from an input coordinate system (the inherent coordinates of pixels in the images based on row and column number) to an output coordinate system, a spatial reference system of the user's choice, such as the geographic coordinate system or a particular Universal ...
Projective transformation is the farthest an image can transform (in the set of two dimensional planar transformations), where only visible features that are preserved in the transformed image are straight lines whereas parallelism is maintained in an affine transform. Projective transformation can be mathematically described as