Search results
Results from the WOW.Com Content Network
Another may be a conductance-based neuron model that views neurons as points and describes the membrane voltage dynamics as a function of trans-membrane currents. A mathematically simpler "integrate-and-fire" model significantly simplifies the description of ion channel and membrane potential dynamics (initially studied by Lapique in 1907). [5] [6]
Neuron allows for the generation of mixed models, populated with both artificial cells and neurons. Artificial cells essentially function as point processes, implemented into the network. Artificial cells require only a point process, with defined parameters. The user can create the structure and dynamics of network cells.
This allows the development of network models in which each neuron, instead of being modelled as a full blown compartmental cell, it is modelled as a simplified two layer neural network. [4] The firing pattern of the cell might contain the temporal information about incoming signals. For example, the delay between the two simulated pathways. [4]
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
The ability to record signals from neurons is centered around the electric current flow through the neuron. As an action potential propagates through the cell, the electric current flows in and out of the soma and axons at excitable membrane regions. This current creates a measurable, changing voltage potential within (and outside) the cell.
The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells .
The amount of neurotransmitter released into the synapse and the amount that can be absorbed in the following cell (determined by the number of AMPA and NMDA receptors on the cell membrane and the amount of intracellular calcium and other ions), The number of such connections made by the axon to the dendrites,
A common use of the phrase "ANN model" is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons, number of layers or their connectivity).