enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem).

  3. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    LP-type problems include many important optimization problems that are not themselves linear programs, such as the problem of finding the smallest circle containing a given set of planar points. They may be solved by a combination of randomized algorithms in an amount of time that is linear in the number of elements defining the problem, and ...

  4. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  5. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    One supposed problem with SMAPE is that it is not symmetric since over- and under-forecasts are not treated equally. The following example illustrates this by applying the second SMAPE formula: Over-forecasting: A t = 100 and F t = 110 give SMAPE = 4.76%; Under-forecasting: A t = 100 and F t = 90 give SMAPE = 5.26%.

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  7. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    The most popular constraint propagation method is the AC-3 algorithm, which enforces arc consistency. Local search methods are incomplete satisfiability algorithms. They may find a solution of a problem, but they may fail even if the problem is satisfiable. They work by iteratively improving a complete assignment over the variables.

  8. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    First, it can be false in practice. A theoretical polynomial algorithm may have extremely large constant factors or exponents, rendering it impractical. For example, the problem of deciding whether a graph G contains H as a minor, where H is fixed, can be solved in a running time of O(n 2), [25] where n is the number of vertices in G.

  9. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    The repetition example would be (3,1), following the same logic. The code rate is the second number divided by the first, for our repetition example, 1/3. Hamming also noticed the problems with flipping two or more bits, and described this as the "distance" (it is now called the Hamming distance, after him). Parity has a distance of 2, so one ...