Search results
Results from the WOW.Com Content Network
The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...
The sum of the exponent bias (127) and the exponent (1) is 128, so this is represented in the single-precision format as 0 10000000 10010010000111111011011 (excluding the hidden bit) = 40490FDB [27] as a hexadecimal number. An example of a layout for 32-bit floating point is and the 64-bit ("double") layout is similar.
The half-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 15; also known as exponent bias in the IEEE 754 standard. [9] E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.
Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm) , the fractional part of the common (base-10) logarithm Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation
The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent (10 3 or 10 −2) are considered exact numbers so for these digits, significant figures are irrelevant.
When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.
The fractional part is known as the mantissa. [ b ] Thus, log tables need only show the fractional part. Tables of common logarithms typically listed the mantissa, to four or five decimal places or more, of each number in a range, e.g. 1000 to 9999.