Search results
Results from the WOW.Com Content Network
The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [3] [4] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
In the study of queue networks one typically tries to obtain the equilibrium distribution of the network, although in many applications the study of the transient state is fundamental. Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be ...
The stationary distribution is the limiting distribution for large values of t. Various performance measures can be computed explicitly for the M/M/1 queue. We write ρ = λ/μ for the utilization of the buffer and require ρ < 1 for the queue to be stable. ρ represents the average proportion of time which the server is occupied.
where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...
The mean sojourn time (or sometimes mean waiting time) for an object in a dynamical system is the amount of time an object is expected to spend in a system before leaving the system permanently. This concept is widely used in various fields, including physics, chemistry, and stochastic processes, to study the behavior of systems over time.