enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closeness (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closeness_(mathematics)

    Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

  3. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    Near sets have a variety of applications in areas such as topology, pattern detection and classification, abstract algebra, mathematics in computer science, and solving a variety of problems based on human perception that arise in areas such as image analysis, image processing, face recognition, ethology, as well as engineering and science ...

  4. Uniform space - Wikipedia

    en.wikipedia.org/wiki/Uniform_space

    By comparison, in a general topological space, given sets A,B it is meaningful to say that a point x is arbitrarily close to A (i.e., in the closure of A), or perhaps that A is a smaller neighborhood of x than B, but notions of closeness of points and relative closeness are not described well by topological structure alone.

  5. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.

  6. Closeness centrality - Wikipedia

    en.wikipedia.org/wiki/Closeness_centrality

    In the classic definition of the closeness centrality, the spread of information is modeled by the use of shortest paths. This model might not be the most realistic for all types of communication scenarios. Thus, related definitions have been discussed to measure closeness, like the random walk closeness centrality introduced by Noh and Rieger ...

  7. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In this context, given an algebraic structure S, a substructure of S is a subset that is closed under all operations of S, including the auxiliary operations that are needed for avoiding existential quantifiers. A substructure is an algebraic structure of the same type as S. It follows that, in a specific example, when closeness is proved ...

  8. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Many types of mathematical objects have a natural notion of distance and therefore admit the structure of a metric space, including Riemannian manifolds, normed vector spaces, and graphs. In abstract algebra, the p-adic numbers arise as elements of the completion of a metric structure on the rational numbers.

  9. Closeness - Wikipedia

    en.wikipedia.org/wiki/Closeness

    Closeness may refer to: closeness (mathematics) closeness (graph theory), the shortest path between one vertex and another vertex;