enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    Doubling the edges of a T-join causes the given graph to become an Eulerian multigraph (a connected graph in which every vertex has even degree), from which it follows that it has an Euler tour, a tour that visits each edge of the multigraph exactly once. This tour will be an optimal solution to the route inspection problem.

  3. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Alternatively, it is possible to use mathematical induction to prove the degree sum formula, [2] or to prove directly that the number of odd-degree vertices is even, by removing one edge at a time from a given graph and using a case analysis on the degrees of its endpoints to determine the effect of this removal on the parity of the number of ...

  4. Odd graph - Wikipedia

    en.wikipedia.org/wiki/Odd_graph

    The odd graph = (,) In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph. The odd graphs have high odd girth, meaning that they contain long odd-length cycles but no short ones.

  5. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.) A sequence which is the degree sequence of some simple ...

  6. Double counting (proof technique) - Wikipedia

    en.wikipedia.org/wiki/Double_counting_(proof...

    In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...

  7. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]

  8. Vizing's theorem - Wikipedia

    en.wikipedia.org/wiki/Vizing's_theorem

    For degree two, any odd cycle is such a graph, and for degree three, four, and five, these graphs can be constructed from platonic solids by replacing a single edge by a path of two adjacent edges. In Vizing's planar graph conjecture , Vizing (1965) states that all simple, planar graphs with maximum degree six or seven are of class one, closing ...

  9. Erdős–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Gallai_theorem

    The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics. It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph. A sequence obeying these ...