Search results
Results from the WOW.Com Content Network
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
Conversely, Favard's theorem states that a sequence of polynomials satisfying a TTRR is a sequence of orthogonal polynomials. Also many other special functions have TTRRs. For example, the solution to + = is given by the Bessel function = (). TTRRs are an important tool for the numeric computation of special functions.
An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).
When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...
In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers ... converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums ...
As another example of using generating functions to relate sequences and manipulate sums, for an arbitrary sequence f n we define the two sequences of sums := = ~:= = (+) (+) (+), for all n ≥ 0, and seek to express the second sums in terms of the first. We suggest an approach by generating functions.
When terms and formulas are represented as strings of symbols, these rules can be used to write a formal grammar for terms and formulas. These rules are generally context-free (each production has a single symbol on the left side), except that the set of symbols may be allowed to be infinite and there may be many start symbols, for example the ...