Search results
Results from the WOW.Com Content Network
In the context of AI, it is particularly used for embedded systems and robotics. Libraries such as TensorFlow C++, Caffe or Shogun can be used. [1] JavaScript is widely used for web applications and can notably be executed with web browsers. Libraries for AI include TensorFlow.js, Synaptic and Brain.js. [6]
The CUDA platform is accessible to software developers through CUDA-accelerated libraries, compiler directives such as OpenACC, and extensions to industry-standard programming languages including C, C++, Fortran and Python. C/C++ programmers can use 'CUDA C/C++', compiled to PTX with nvcc, Nvidia's LLVM-based C/C++ compiler, or by clang itself ...
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an IL), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing cores of Nvidia graphics processing units (GPUs).
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
TensorFlow is a software library for machine learning and artificial intelligence. It can be used across a range of tasks, but is used mainly for training and inference of neural networks . [ 3 ] [ 4 ] It is one of the most popular deep learning frameworks, alongside others such as PyTorch and PaddlePaddle.
Julia is a high-level, general-purpose [17] dynamic programming language, designed to be fast and productive, [18] for e.g. data science, artificial intelligence, machine learning, modeling and simulation, most commonly used for numerical analysis and computational science.
With the introduction of the CUDA (Nvidia, 2007) and OpenCL (vendor-independent, 2008) general-purpose computing APIs, in new GPGPU codes it is no longer necessary to map the computation to graphics primitives. The stream processing nature of GPUs remains valid regardless of the APIs used.